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Abstract The lattice inversion method is used to constmct the pair potential between a pair of 
unlike atoms for Cu-Au and Cu-Pd intermetallic compounds within the framework of Johnson's 
analytical model of the embedded-atom method. Compared with previous treatises. the alloy 
potential obtained by the present method is based on the LIZ supersmctures Cu3Au and CuIPd 
3s references so that the usual assumption that the pair potential between distinct atoms is a 
function of monatomic pair potentials is cancelled. The alloy potentials from inversion fall in 
with those from the avenge schemes of Foils et ul and Johnson in the short nnge but show 
deviation in the long range. The present method is used to salve the considerable disagreements 
of Johnson's calculalions for the dilute-limit heats of solution and the phase stabilities of the 
intermetallic compounds of palladium with noble metals. While the overall degree of agreement 
is substantially improved. it is not good in  some cases, nor is the phonon spectrum of gold. 

1. Introduction 

The embedded-atom method (EAM), proven to be effective in modelling the interatomic 
interaction in metals, has gained wide applications in atomistic simulation for the geometrics 
and energetics of metallic systems [ 1-31, The idea of the EAM is to separate the cohesive 
energy into two contributions: one from the screened electrostatic force between two ionic 
cores; the other from the overlapping energy, the exchange-correlation energy and so on. 
The latter is represented by the embedding function, which means the energy needed 
to immerse an atom into a lattice site with the electron background contributed by the 
surrounding atoms as environment. The immersion energy is assumed to be a function of 
local electron density, and this density is supposed to be the rigid superposition of the so- 
called atomic electron density from all the other atoms on the lattice. The basic equations 
for the EAM 
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where h ( r )  is the electron density centred on site j and y , ( r )  is the pair potential related 
to a specified pair of atoms i and j .  pi and a, are the lattice sums on the corresponding 
sublattices. In a binary alloy system with type-a and type-b atoms, there exist two kinds of 
density funcdon f a ( r ) ,  f b ( r )  and three kinds of potential functions Vm(r) ,  V&(r),  Vbb(r). 
As usual, the four functions &r), f b ( r ) ,  V&) and I/&@) are assumed to be transferable 
from the monatomic systems to the alloy system, so that they can be determined from the 
properties of the respective pure metals. The remaining function Vab(r) is assumed to be 
the geometric mean of monatomic pair potentials 
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by the model of Foiles, Baskes and Daw (FED) [4], or alternatively to be a density-weighted 
combination of monatomic pair potentials 

by the model of Johnson [5]. 
The common assumption that the pair potential between a pair of unlike atoms is a 

function of monatomic pair potentials has insufficient theoretical evidence, because it is 
uncertain whether the assumed diatomic pair potential is able to reproduce the crystalline 
cohesion of alloy phases. Johnson has used equation (5) to study the dilute-limit heats 
of solution and the phase stabilities of some FCC-based binary intermetallic systems [5, 
61 (the same formula was also used to study a BCC based binary intermetallic compound 
by Zhang and Ouyang [7]). He found particular disagreement with the first-principles 
results of Takizawa el a[ 181 and Terakura et al [9]  for the phase stabilities of noble- 
metal and palladium compounds [6]. The dilute-limit heats of solution of binary alloys 
containing palladium predicted by Johnson also seriously disagree with experiments [5]. 
Since the model of Johnson predicted the properties of pure metals fairly well [IO, I I], 
these disagreements may result from the improper construction of the potential Vub(r)  as 
equation (5). 

In this paper, we present a method for constructing the pair potential Vu&) for the Cu- 
Au and Cu-Pd systems with the use of the lattice inversion method (LIM) developed by Chen 
era/ [ 12-14] and us [ 15, 161. The LIM is a generalization of the old famous Mobius inversion 
formula to the three-dimensional lattice, and thus is concise for its arithmetical feature. The 
pair potential VAb(r) given by the present method is based on the L12 superstructures Cu3Au 
and CulPd as references. Calulation results show that the inverted alloy potentials coincide 
with those from the FBD scheme and Johnson's scheme at short interatomic distances and 
gradually deviate when the distance becomes longer. The present method is used to solve 
the serious disagreement appearing in Johnson's calculations about the dilute-limit heats of 
solution and the phase stabilities of intermetallic alloys of palladium with noble metals. 

2. Model 

For a binary superstructure with type-a and type-b atoms, the total cohesive energy can be 
written as 

with 



where ia ( j a )  and i b  ( j b )  are the summation subscripts over sublattices a and b. 
Cu3Au and CusPd crystallize into Llz superstructures. The LlZ superstructure A3B 

defines four sublattices, with three containing a atoms and one containing b atoms. Each 
sublattice is a simple cubic structure. Viewed from the site of a b atom, the comer vertices 
(cvs) are occupied by b atoms and the face centres (Fcs) are occupied by a atoms. Therefore 
one can write the pairwise energy of a b atom as 

If viewed from the site of an a atom, the corner vertices are occupied by a atoms while a 
third of the face centres are occupied by b atoms and the other two-thirds are occupied by 
a atoms. Therefore one can write the painvise energy of an a atom as 

(12) 
1 1 1 “  

2 3  3 ;  6 ,  
Oa = - V,,(Ri) 4- - c Vu(&) + - vab(Ri). 

The total pairwise energy of a unit cell then reads 

m m +E w(n)V,(z/;iRI) -I W(2n - l ) v a b ( m R i )  (13) 
n=I “ = I  

where w(n) is the number of atoms in the shell with radius f i R 1  for theFCC structure. If 
2n cannot be decomposed into a sum of three square non-negative integers then w(n)  = 0. 
Throughout this paper, we cut off any lattice summation at n = 50, thereby including atoms 
up to the 47th-nearest neighbours. The total electron densities at the site of an a atom and 
a b atom are 

2 -  +? w(2n - l ) f a ( m R l )  
”=I  

(14) 
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(15) 
Imposing a homogeneous deformation on the superstructure, the total pairwise energy 

3ad 4 Gb and the total embedding energy 3F"(p') + F b ( p b )  then vary as functions of 
NN distance R I .  Here we  make a plausible supposition that the cohesive energy of a unit 
cell with respect to RI  follows the universal cohesion equation given by Rose, Smith, 
Guinea and Ferrante (RSGF), which can be constructed from the equilibrium lattice constant, 
the sublimation energy and the bulk modulus [17]. Our first-principles calculations with 
the linear-muffin-tin-orbitals (LMTO) method with the atomic-sphere approximation (ASA) 
underpinned this suggestion. The functions of ab initio cohesive energies of Cu3Au and 
Cu3Pd in relation to R ,  follow the functional form of RSGF but the theoretical sublimation 
energies and bulk moduli of the alloys do not agreqwith, the experimental values [ I S ] .  
Therefore we have the cohesive energy of a unit cell for the alloy system as 

where E: is the sublimation energy of a unit cell of the superstructure, CY' = (9i2:Bc/E,f)'/2. 
The lattice constants a:, the unit cell sublimation energies E;, and the bulk moduli Be for 
CusAu and Cu3Pd are listed,in table,,l. The experimental data for Cu3Pd are not available, 
so they are approximately chosen as follows. The lattice constant and the bulk modulus 
of CuXPd are given by Vegard's law, which will bring minor second-order errors. The 
sublimation energy per unit cell of CujPd is obtained by the ab initio result of absolute 
excess heat of enthalpy calculated by Takizawa etal [8] plus 3Es[Cu]+E,[Pd]. 

Therefore we have 

and 

3 W R l )  + @'(RI)  = EC(Ri) - 3Fa[p"(Ri) ]  - F b [ p b ( R ~ ) ] .  
Johnson's model [61 defines the pair potential and the scaled electron density as follows: 

where R I ,  is the nearest-neighbour (NN) distance, and V, =Zap, f S y >  fe = pc/Sp, @e = E,. 
pp = EJQ, with the lattice summation 
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Johnson defined the embedding function by using the cohesion equation of RSGF 

~ ( p )  = - E , [ ]  +a(x+P - ~)]exp[-or(x-'/~ - I)] - ~ ~ x y / P  (20) 
where x = p/pe.  The pair potential and the electron density in Johnson's model are not 
defined in the region where the distance R is unrealistically smaller than the ionic radius. 
Therefore, the embedding function is not defined when p is unrealistically large. The 
parameters in the above equation can be decided from the equilibrium atomic volume a,, 
the sublimation energy E,, the unrelaxed vacancy-formation energy E,, the bulk modulus 
B and the Voigt average shear modulus G as follows [6]: 

The unrelaxed vacancy-formation energies and the Voigt shear moduli for Cu, Au and Pd 
are taken from [41. In order to test the effectiveness of Johnson's model for the monatomic 
system, we calculate the phonon dispersion relations for Cu, Au and Pd. respectively. We 
find Johnson's model predicts fairly good results for Cu but bad results for Au. The results 
for Pd are of moderate accuracy. 

Table 1. The equilibrium lattice co11stmls n, (A), the unit cell sublimation energies E, ,(eV) 
and the bulk moduli B (Mbar) for Cu, Au. Pd, C q A u  and Cu3Pd. The choices of the data for 
CusPd are stated in the text. 

System n, E. B 

CU 3.61 [22] 3.49 [22] 1.37 [U1 
All 4.08 [ZZ] 3.81 [22] 1.73 [22] 
Pd 3.89 [22] 3.89 [22] 1.81 [ZZI 
Cu,Au 3.74 [23] 14.57 [24] 1.51 [251 
C u P d  3.68 14.67 1.48 

3. Lattice inversion method 

Consider the FCC structure. The basic equations of LIM can be written as 
m 

F W )  = C w ( n ) f ( J i i R l )  
n=t 

and 

(24) 

m 
f ( ~ 1 )  = C m ( n ) F ( J i i R I )  (2-5) 

"=I 

where m(n) is the three-dimensional Chen-Mobius function on the FCC lattice, which can 
be calculated according to the following relations [ 141 

m(n) = L O O  (26) 
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h L 

Wave vector (2Wa) 

(b)  

Wave Vector (2nlal 

(c  I 

Wave Vector (2n/a) 
Figure 1. The phonon dispersion curves for Cu. Au and Pd. The open circles are experimental 
eigenfrequencies, Iden from 1191 (Cu measured at 80 K), [20] (Au measured at 296 K) and 
[21] (Pd measured at 296 K). (a) Cu; (b) Au; (c) Pd. 
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with 
r(2n - 1) = 0 r(2n) = ~ ( n )  

where p = 2 for the FCC lattice, k is a natural number. The sum runs over all the factors 
of p k  including unity and p k .  From the above equations, the inversion coefficients can be 
decided. However, the above formulae are not really plain enough to be understood. Here, 
we give an alternative but equivalent formula for calculating m(n).  For an arbitrary natnral 
number n within the following interval 

where [ x ]  is the maximum integer less than x ,  S(x.  y )  is tbe Kronecker function. The above 
formula is a generalization of the Kronecker expansion of the Mobius function on a unitary 
semigroup to the FCC lattice [15]. The calculation of m(n) based on equation (28) can be 
easily performed by a simple computer program. 

The inversion of equation (17) then becomes 

where 

= m(2n - 1). (30) 
On deriving equation (30) we have for convenience changed the upper limits of each 

summation in equation (28) to infinity. 
~~ 

4. Results and discussion 

The results of Au-Cu and Cu-Pd pair potentials are plotted in figure 2, by comparison 
with the alloy,pair potentials of Johnson's average scheme and the FED geometiic average 
scheme. It is illusvated that the three curves coincide with each other in the region of small 
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interatomic distance. With increasing interatomic separation, the disagreements become 
greater and greater. The force range of Vcu-Au(r) is longer than those of Johnson and FBD, 
while the force range of VQ-w(r) is shorter than those of Johnson and FED. 
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Figure 2. The pair potentials between a pair of different atoms in Cu-Au and Cu-Pd inrermeullic 
alloys. Outer dotted-VA+(r). inner dotted-Vg-g(r). solid-VA-B(r)(inverd). dashed- 
VA-B(I)(FBD), dashed-daued-VA-a(r)(Iohnson) (A=Au, Pd; B=Cu). @) Cu-Au: (b) Cu-Pd. 
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We calculate the excess heats of formation versus the NN distance for ordered Cu- 
Au and Cu-Pd superstructures. In the present calculations and the quoted first-principles 
calculations, the tetragonal distortion of the Llo superstructure is not considered. By 
comparison with ab initio results and Johnson’s results, table 2 lists the corresponding 
numerical results at equilibrium. For the Cu-Pd system, the lattice constants of CuPd and 
CuPd3 structures satisfy Vegard‘s law. 

Table 2. Equilibrium lattice constants and excess hears of formlion for t h e  ordered 
Stoichiomelric sup”ctureS CusX(L12). CuX(L1o) and CuXdL12)(X = A”. Pd). The first 
row is the  result^ predicted by lhe present uM. The secand row is lhose from the first-principles 
ca1culalion of Tkiwwa et rrl [8] and Temkura et ol [9]. The lanice comtmts with asterisks are 
the predictions of Vegard’s law. The third IOW is the results of Johnson 161. 

System (k AE Syslem uc AE 

Cu3Au 3.74 -0.28 CusPd 3.68’ -0.31 
3.70 -0.26 3.68’ -0.31 
NI\ -0.22 NA 0.06 

(CuAu)i 3.86 -0.36 (CuPdh 3.75 -0.39 
3.84 -0.28 3.75’ -0.28 
NA -0.25 NA 0.08 

CuAus 3.98 -0.22 CuPdi 3.82 -0.28 
3.96 -0.14 3.82” -0.21 
NA -0.06 NA 0.06 

The dilute-limit heat of solution of a guest atom of type b in a host lattice with type-a 

(1) the energy needed for removing a host atom 

atoms can be calculated as the summation of the following five terms: 

El = -Fa(,@) - w(n)V.,,(&fl;J 
*=I 

(2) the energy needed for adding a guest atom 

(3) the energy results from the effects on the neighbouring atoms caused by adding a 
guest atom 

W 

E3 = ~(n)[-F%:l+ F%,U + & W l l  
n=l 

with 

A p ( d  = -f”(&RyJ + fb(&RyJ 

(4) the energy results from the change of cohesive energy after the host atom is replaced 
by the guest atom 

E4 = -E: + E,” 

and (5) relaxation energy [4, 51 
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E = E1 + Ez+ E3 + E 4 +  E5 

The dilute-limit heats of solution of binary systems containing Pd predicted by Johnson 
[5] have remarkable disagreements with experimental data [24]. With the inverted alloy 
potential V&), the errors are considerably reduced (see table 3). 

Table 3. Dilute-limit h e m  of solution for binary alloys of Cu, Au. Pd. The data in parentheses 
are [he results of Johnson. The cxperimentd values are t&en from [24]. G and H denote guest 
and host, respectively. All energies are in eV. 

systcm Unrelaxed Relaxed Experimental 

Cu(G)Au(H) -0.08( 0.03) -0.21(-0.10) -0.13 
Au(F)Cu(H) -0.07(-0.03) -0.34(-0.29) -0.19 
Cu(G)Pd(H) -0.30( 0.1 I)  -0.35( 0.06) -0.39 
Pd(G)Cu(H) -0.36( 0.16) -0.44( 0.08) -0.44 

, , , , . , ,,, I ,  

In conclusion, we have presented a useful method to construct the alloy pair potential 
in the EAM. The method needs no presupposition about the pair potential between unlike 
atoms. The difference between alloy pair potentials constructed by average schemes from 
pure metals and the inverted alloy pair potential lies in the fact that the inverted potential 
can reproduce the alloy cohesion equation of RSGF accurately whereas the average potentials 
cannot. As we have shown, the present method may provide afeasible solution for reducing 
the noticeable errors occurring in Johnson's calculations concerning palladium. 
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